3,744 research outputs found

    Forecasting the severity of the Newfoundland iceberg season using a control systems model

    Get PDF
    The iceberg hazard for the Grand Banks area to the east of Newfoundland varies dramatically from one year to the next. In some years no icebergs penetrate south of 48°N, while in others well over 1000 icebergs enter the main shipping lanes between Europe and NE North America. Advance knowledge of this seasonal hazard would have major implications for ship routing, as well as the resources required for maintaining an effective ice hazard service. Here, a Windowed Error Reduction Ratio control system identification approach is used to forecast the severity of the 2018 iceberg season off Newfoundland, in terms of the predicted number of icebergs crossing 48°N, as well as to hindcast iceberg numbers for 2017. The best estimates are for 766 ± 297 icebergs crossing 48°N before the end of September 2017 and 685 ± 207 for 2018. These are both above the recent observed average of 592 icebergs for that date, and substantially so for 2017. Given the bimodal nature of the annual iceberg number, this means that our predictions for both 2017 and 2018 are for a high iceberg season, with a 71% level of confidence. However, it is most likely that the 2018 iceberg numbers will be somewhat less than 1000, while our higher hindcast for 2017 is consistent with the observed level of 1008. Our verification analysis, covering the 20-year period up to 2016, shows our model's correspondence to the high or low nature of the 48°N iceberg numbers is statistically robust to the 0.05% level, with a skill level of 80%

    Advanced Glycation End Products Acutely Impair Ca2+ Signaling in Bovine Aortic Endothelial Cells

    Get PDF
    Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs) are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signalling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signalling in bovine aortic endothelial cells (BAEC). Ca2+ signalling was studied using the fluorescent indicator dye Fura2-AM. AGEs were generated by incubating bovine serum albumin with 0 - 250 mM glucose or glucose-6-phosphate for 0 to 120 days at 37ºC. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML) as assayed using both GC-MS and HPLC. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 µM). In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 µM) and ionomycin (3 µM), but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 µM) and NAD(P)H oxidase inhibitors apocynin (500 µM) and diphenyleneiodonium (DPI, 1 µM) abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 µM). In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of ROS from NAD(P)H oxidase and possible activation of the IP3 receptor

    The Influence of Motion and Stress on Optical Fibers

    Full text link
    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 microns VIRUS fibers to be immune to bending-induced FRD at bend radii of R > 10cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%.Comment: 19 pages, 22 figure

    Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    Full text link
    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We also find that the halos are not under concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. We investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. Determining the importance of these correlations will require further model developments and larger observational samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap

    A study protocol for a randomised crossover study evaluating the effect of diets differing in carbohydrate quality on ileal content and appetite regulation in healthy humans

    Get PDF
    A major component of the digesta reaching the colon from the distal ileum is carbohydrate. This carbohydrate is subject to microbial fermentation and can radically change bacterial populations in the colon and the metabolites they produce, particularly short-chain fatty acids (SCFA). However, very little is currently known about the forms and levels of carbohydrate in the ileum and the composition of the ileal microbiota in humans. Most of our current understanding of carbohydrate that is not absorbed by the small intestine comes from ileostomy models, which may not reflect the physiology of an intact gastrointestinal tract. We will investigate how ileal content changes depending on diet using a randomised crossover study in healthy humans. Participants will be inpatients at the research facility for three separate 4-day visits. During each visit, participants will consume one of three diets, which differ in carbohydrate quality: 1) low-fibre refined diet; 2) high-fibre diet with intact cellular structures; 3) high-fibre diet where the cellular structures have been disrupted (e.g. milling, blending). On day 1, a nasoenteric tube will be placed into the distal ileum and its position confirmed under fluoroscopy. Ileal samples will be collected via the nasoenteric tube and metabolically profiled, which will determine the amount and type of carbohydrate present, and the composition of the ileal microbiota will be measured. Blood samples will be collected to assess circulating hormones and metabolites. Stool samples will be collected to assess faecal microbiota composition. Subjective appetite measures will be collected using visual analogue scales. Breath hydrogen will be measured in real-time as a marker of intestinal fermentation. Finally, an continuous fermentation model will be inoculated with ileal fluid in order to understand the shift in microbial composition and SCFA produced in the colon following the different diets. ISRCTN11327221. [Abstract copyright: Copyright: © 2019 Byrne CS et al.

    Detection of UWB ranging measurement quality for collaborative indoor positioning

    Get PDF
    Wireless communication signals have become popular alternatives for indoor positioning and navigation due to lack of navigation satellite signals in such environments. The signal characteristics determine the method used for positioning as well as the positioning accuracy. Ultra-wideband (UWB) signals, with a typical bandwidth of over 1 GHz, overcome multipath problems in complicated environments. Hence, potentially achieves centimetre-level ranging accuracy in open areas. However, signals can be disrupted when placed in environments with obstructions and cause large ranging errors. This paper proposes a ranging measurement quality indicator (RQI) which detects the UWB measurement quality based on the received signal strength pattern. With a detection validity of more than 83%, the RQI is then implemented in a ranging-based collaborative positioning system. The relative constraint of the collaborative network is adjusted adaptively according to the detected RQI. The proposed detection and positioning algorithm improves positioning accuracy by 80% compared to non-adaptive collaborative positioning

    Follow the Rain? Environmental Drivers of Tyrannus Migration across the New World

    Get PDF
    Predictable seasonal changes in resources are thought to drive the timing of annual animal migrations; however, we currently understand little about which environmental cues or resources are tracked by different migratory bird species across the planet. Understanding which environmental cues or resources birds track in multiple migratory systems is a prerequisite to developing generalizable conservation plans for migratory birds in a changing global environment. Within the New World, climatic differences experienced by Nearctic–Neotropical migratory (NNM; i.e. breed in North America and spend the nonbreeding period in the Neotropics) and Neotropical austral migratory (NAM; i.e. breed and spend the nonbreeding period wholly within South America) bird species suggest that their migratory strategies may be shaped by unique selective pressures. We used data gathered from individuals fitted with light-level geolocators to build species distribution models (SDMs) to test which environmental factors drive the migratory strategies of species in each system. To do so, we evaluated whether temperature, precipitation, and primary productivity (NDVI) were related to the seasonal distributions of an NNM (Eastern Kingbird [Tyrannus tyrannus]) and NAM species (Fork-tailed Flycatcher [T. savana]). Both Eastern Kingbird and Fork-tailed Flycatcher locations were positively correlated with high precipitation during their nonbreeding seasons. Eastern Kingbird locations were positively correlated with both NDVI and temperature during their breeding season and both pre- and post-breeding migrations. Fork-tailed Flycatcher locations were positively correlated with both temperature and precipitation during both migrations, but only temperature during the breeding season. The value of extending the application of geolocator data, such as in SDMs, is underscored by the finding that precipitation was such an important predictor of the nonbreeding distributions of both types of migrants, as it remains unclear how global climate change will affect wet–dry cycles in the tropics

    How Do Developers Refactor Code to Improve Code Reusability?

    Get PDF
    . Refactoring is the de-facto practice to optimize software health. While there has been several studies proposing refactoring strategies to optimize software design through applying design patterns and removing design defects, little is known about how developers actually refactor their code to improve its reuse. Therefore, we extract, from 1,828 open source projects, a set of refactorings which were intended to improve the software reusability. We analyze the impact of reusability refactorings on state-of-the-art reusability metrics, and we compare the distribution of reusability refactoring types, with the distribution of the remaining mainstream refactorings. Overall, we found that the distribution of refactoring types, applied in the context of reusability, is different from the distribution of refactoring types in mainstream development. In the refactorings performed to improve reusability, source files are subject to more design level types of refactorings. Reusability refactorings significantly impact, high-level code elements, such as packages, classes, and methods, while typical refactorings, impact all code elements, including identifiers, and parameter

    Swift XRT and UVOT deep observations of the high energy peaked BL Lac object PKS 0548-322 close to its brightest state

    Get PDF
    We present the results of a spectral analysis of 5 Swift XRT and UVOT observations of the BL Lac object PKS 0548-322 carried out over the period April-June 2005. The X-ray flux of this high energy peaked BL Lac (HBL) source was found to be approximately constant at a level of F(2-10 keV) ~ 4x10^-11 erg cm^-2 s^-1, a factor of 2 brighter than when observed by BeppoSAX in 1999 and close to the maximum intensity reported in the Einstein Slew Survey. The very good statistics obtained in the 0.3-10 keV Swift X-ray spectrum allowed us to detect highly significant deviations from a simple power law spectral distribution. A log-parabolic model describes well the X-ray data and gives a best fit curvature parameter of 0.18 and peak energy in the Spectral Energy Distribution of about 2 keV. The UV spectral data from Swift UVOT join well with a power law extrapolation of the soft X-ray data points suggesting that the same component is responsible for the observed emission in the two bands. The combination of synchrotron peak in the X-ray band and high intensity state confirms PKS 0548-322 as a prime target for TeV observations. X-ray monitoring and coordinated TeV campaigns are highly advisable.Comment: Accepted for publication in A&A (6 pages, 3 figures

    The Stellar Halos of Massive Elliptical Galaxies

    Full text link
    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107x107 sq arcsec), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 per pixel in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions sigma* > 150 km/s, we study the radial dependence in the equivalent widths (EWs) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between sigma* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are approximately an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5R_e, while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high alpha-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.Comment: To appear in ApJ, 15 pages, 9 figure
    • …
    corecore